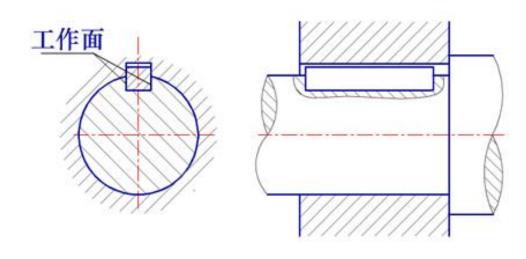
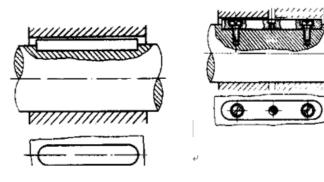
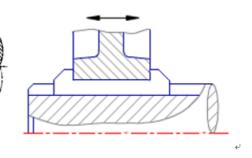

第十讲 轴毂连接


10.1 键连接

键是一种标准零件,可以分为平键、楔键、半圆键、 切向键等几大类。键连接常用来实现轴与轮毂间的 周向固定并传递转矩,还可以用于实现轴上零件的 轴向固定或沿轴向滑动。

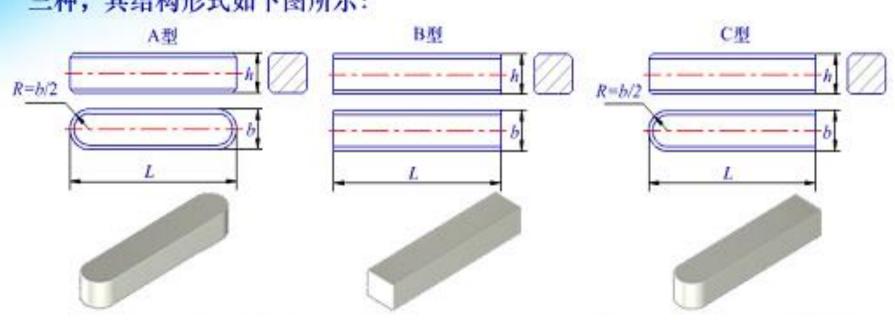
1平键连接


工作原理:平键的两侧是工作面,上表面与轮毂键槽底面间有间隙(如图),工作时靠轴槽、键及毂槽的侧面受挤压来传递转矩,故定心性较好。



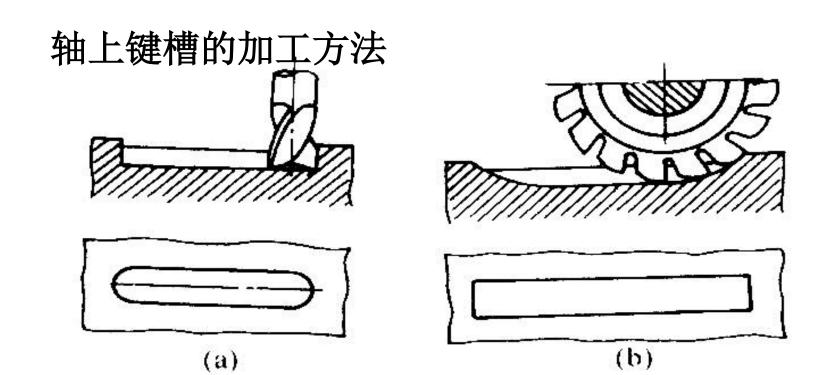
根据用途,平键又可分为

- ■普通平键
- ■导向平键
- ■滑键



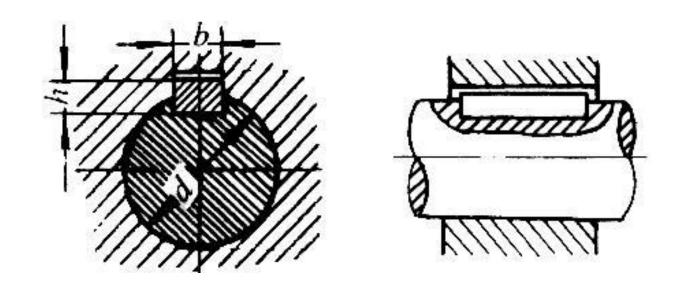
普通平键与轮毂上键槽的配合较紧,属静连接。导向平键和滑键与轮毂的键槽配合较松,属动连接。

1) 普通平键


普通平键按构造分,有圆头(A型)、平头(B型)以及单圆头(C型) 三种,其结构形式如下图所示:

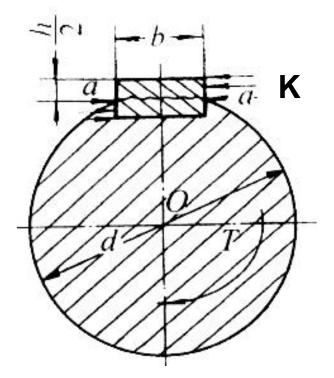
A型平键的轴槽用端铣刀加工,键在槽中固定良好,但轴上键槽引起的 应力集中较大;

B型平键用于盘铣刀加工的轴槽,轴的应力集中较小;


C型平键常用于轴端与毂类零件联接,与A型平键一样,其圆头部分的侧面与键槽并不接触,未能充分利用。

轮毂上键槽的加工方法

插削或拉削


键的选择和强度校核 键的尺寸选择 平键的尺寸主要是键的截面尺寸b×h及键长L。 b×h根据轴径d由标准中查得,键的长度参考轮毂 的长度确定,一般应略短于轮毂长,并符合标准中规 定的尺寸系列,满足挤压强度的校核要求。

轴	键	键 槽										
公称直径d	公称尺寸 b×h	宽度b的极限偏差					深 度				N2. 472	
		较松键连接		一般键连接		较紧键 连 接	轴t		毂t1		半径r	
		轴H9	载D10	轴N9	毂Js9	轴和毂 P9	公称尺寸	极限偏差	公称 尺寸	极限 偏差	最小	最大
>12~17	5×5	+0. 0300	+0.078	0 -	± 0.015	-0.012	3	+0.1	2.3	+0.1		
$>17\sim22$	6×6	10.0000	+0.030	0.030	0.010	-0.042	3. 5	0	2.8	0.1	0. 16	0. 25
$>22\sim30$	8×7	+0.036	+0.098	0 –	± 0.018	-0.015	4		3.3	U		
>30~38	10×8	0	+0.040	0.036	<u> </u>	-0.051	5		3.3			
>38~44	12×8						5		3. 3			
>44~50	14×9	+0. 043	+0.120	0 -	±0.0915	-0.018	5. 5	+0.2	3.8	10.0	0. 25	0.40
>50~58	16×10		+0.050	0.043	± 0.0215	-0.061	6		4. 3			
>58~65	18×11						7	0	4.4	+0.2		
>65~75	20×12						7. 5		4. 9	0		
>75~85	22×14	+0.052	+0.149	0 -	10000	-0.022	9		5. 4		0 40	0 00
>85~95	25×14	0	+0.065	0.052	± 0.026	-0.074	9		5. 4		0.40	0.60
>95~110	28×16				_		10		6. 4			
键的长度 系列 360												

对于普通平键连接(静连接),其主要失效形式是 工作面的压溃,有时也会出现键的剪断,但一般只作连 接的挤压强度校核。

平键连接的受力分析

主要失效形式 是键、轴槽、和毂槽三者中强度最弱的工作面被压溃。

强度条件为(挤压应力):

$$\sigma_p = \frac{2T}{kld} \le [\sigma]_p$$
 MPa

式中: σ_P —工作面的挤压应力,MPa

T——传递的转矩,N.mm

d——轴的直径 mm

I——键的工作长度,mm

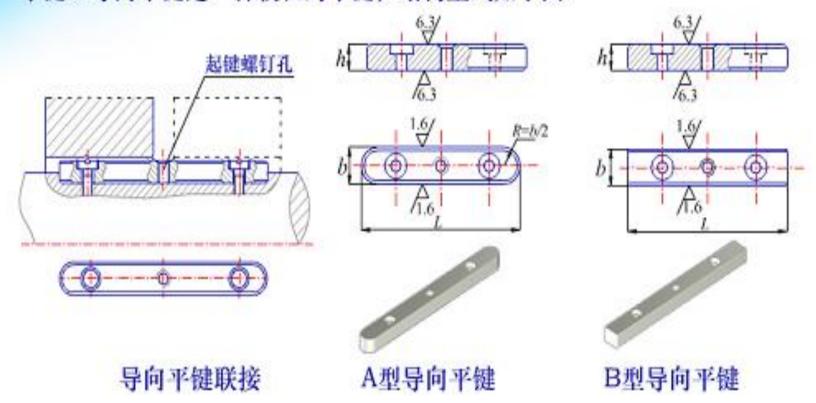
A型 I=L-b

B型 I=L

C型 I=L-b/2

L、b为键的公称长度和键宽

k——键与毂槽的接触高度


 $[\sigma_P]$ ——许用挤压应力(P56表4.1)

如若强度不够,加双键按180°布置,考虑载荷分布的不均匀性,按1.5个键计算

键的材料常用(σ_B≥ 600MPa): 45钢、20钢、Q235

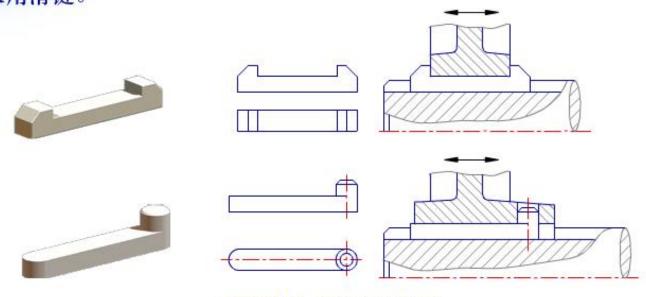
2) 导向平键连接

当被联接的毂类零件在工作中必须在轴上作轴向移动时,则可采用导向 平键。导向平键是一种较长的平键,结构型式如下图:

键用螺钉固定在轴上,键与轮毂键槽为间隙配合,轴上零件能做轴向移动。为了拆卸时方便,设有起键螺钉孔,以便拧入螺钉使键退出键槽。

用于轴上零件轴向移动量不大的场合,如变速箱中的滑移齿轮。

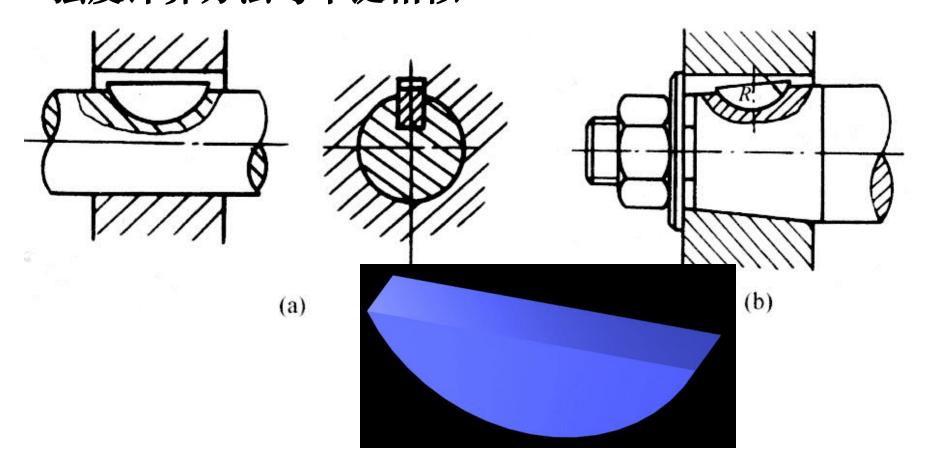
导向平键用于动连接


导向平键连接主要失效形式是工作面的磨损

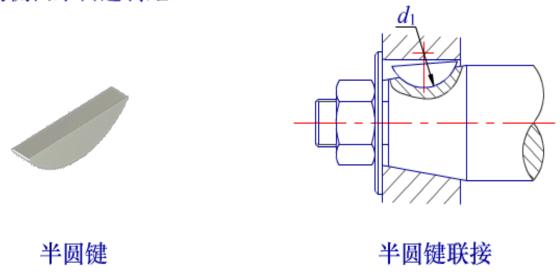
3)

滑键

当零件需滑移的距离较大时,因所需导向平键的长度过大,制造困难, 故宜采用滑键。

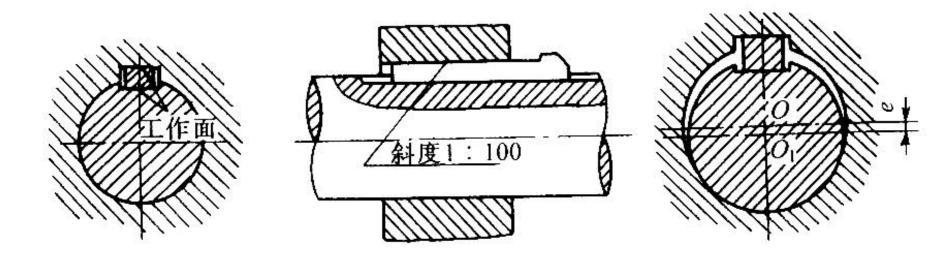


滑键联接 (键槽已截短)


滑键固定在轮毂上,轴上零件带键在轴上的键槽中作轴向移动。 滑键主要用于轴上零件移动量较大的场合。

2 半圆键连接

键的侧面为工作面,键的上表面与榖槽底面间有间隙。强度计算方法与平键相似。


半圆键联接中,轴上键槽是用尺寸与半圆键相同的半圆键槽铣刀铣出的, 因而键在槽中能绕其几何中心摆动以适应轮毂中键槽的斜度。半圆键工作时, 也是靠键的侧面来传递转矩。

半圆键联接工艺性较好,装配方便;但轴上槽较深对轴的强度削弱较大。 一般用于轻载静联接中,适用于轴的锥形端部与轮毂的联接。

3 楔键连接

楔键的上、下表面为工作面,两侧面为非工作面。键的上表面与键槽底面均有1:100的斜度。工作时,键的上下两工作面分别与轮毂和轴的键槽工作面压紧,靠其摩擦力和挤压传递扭矩。

